

Welcome to Kiwisolver’s documentation!

Kiwisolver is an efficient C++ implementation of the Cassowary constraint
solving algorithm. Kiwi is an implementation of the algorithm based on the
seminal Cassowary paper. It is not a refactoring of the original C++ solver.
Kiwisolver has been designed from the ground up to be lightweight and fast.
Kiwisolver range from 10x to 500x faster than the original Cassowary solver
with typical use cases gaining a 40x improvement. Memory savings are
consistently > 5x.

In addition to the C++ solver, Kiwi ships with hand-rolled Python bindings.

	Getting started
	Installing Kiwisolver on Python

	Constraints definition and system solving

	Solver internals and tips

	Use cases
	Enaml

	Developer notes
	C++ codebase

	Python bindings

	API Documentation
	Python API

	C++ API

Indices and tables

	Index

	Module Index

	Search Page

Kiwisolver usage

This section of the docs aims at getting you up and running with Kiwi. You will
in particular learn how to install Kiwi, create a system of constraints, solve,
update it etc… By the end of it you will know how to use the solver.

However if you are not familiar with Cassowary (or constraints solver in
general) it may not be enough to get you started using it in your project.
Hopefully the real world use cases described in Kiwisolver real uses will shed
more light on how to use it in real applications.

	Installing Kiwisolver on Python
	The easy way: Pre-compiled packages

	Compiling it yourself: The Hard Way

	Supported Platforms

	Checking your install

	Constraints definition and system solving
	Defining variables and constraints

	Managing constraints strength

	Adding edit variables

	Solving and updating variables

	Footnotes

	Solver internals and tips
	Inspecting the solver state

	Stay constraints emulation

	Creating strengths and their internal representation

	Managing memory

	Representation of constraints

	Performance implementation tricks

Installing Kiwisolver on Python

Kiwisolver is supported on Python 3.7+. Installing it is a straight-forward
process. There are three approaches to choose from.

The easy way: Pre-compiled packages

The easiest way to install atom is through pre-compiled packages. Kiwisolver is
distributed pre-compiled in two-forms.

Conda packages

If you use the Anaconda [https://store.continuum.io/cshop/anaconda] Python distribution platform (or Miniconda [https://conda.io/miniconda.html], its
lighter-weight companion), the latest release of Kiwisolver can be installed
using conda from the default channel or the conda-forge channel:

$ conda install kiwisolver

$ conda install kiwisolver -c conda-forge

Wheels

If you don’t use Anaconda, you can install Kiwisolver pre-compiled,
through PIP, for most common platforms:

$ pip install kiwisolver

Compiling it yourself: The Hard Way

Building Kiwisolver from scratch requires Python and a C++ compiler. On Unix
platform getting a C++ compiler properly configured is generally
straighforward. On Windows, starting with Python 3.6 the free version of the
Microsoft toolchain should work out of the box. Installing Kiwisolver is then
as simple as:

$ pip install .

Note

For MacOSX users on OSX Mojave, one needs to set MACOSX_DEPLOYMENT_TARGET
to higher than 10.9 to force the compiler to use the new C++ stdlib:

$ export MACOSX_DEPLOYMENT_TARGET=10.10

Supported Platforms

Kiwisolver is known to run on Windows, OSX, and Linux; and compiles cleanly
with MSVC, Clang, GCC, and MinGW. If you encounter a bug, please report
it on the Issue Tracker [http://github.com/nucleic/enaml/issues].

Checking your install

Once you installed kiwisolver you should be able to import it as follows:

import kiwisolver

Note

On Windows, the import may fail with ImportError: DLL load failed. If it
does, it means your system is missing the Microsoft Visual C++
redistributable matching your Python version. To fix the issue download
and install the package corresponding to your Python version
(https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads):

	Python 2.7: Visual C++ Redistributable 2008

	Python 3.4: Visual C++ Redistributable 2010

	Python 3.5+: Visual C++ Redistributable 2015 or more recent

Constraints definition and system solving

A system in Kiwi is defined by a set of constraints that can be either
equalities or inequalities (>= and <= only, strict inequalities are not
accepted), each of which can have an associated strength making more or less
important to respect when solving the problem. The next sections will cover how
to define those constraints and extract the result from the solver.

Defining variables and constraints

The first things that need to be defined are variables. Variables represent
the values which the solver will be trying to determine. Variables are
represented by Variable objects which can be created as follow:

Python

from kiwisolver import Variable

x1 = Variable('x1')
x2 = Variable('x2')
xm = Variable('xm')

C++

#include <kiwi/kiwi.h>

using namespace kiwi

Variable x1("x1");
Variable x2("x2");
Variable xm("xm");

Note

Naming your variables is not mandatory but it is recommended since it will
help the solver in providing more meaningful error messages.

Now that we have some variables we can define our constraints.

Python

constraints = [x1 >= 0, x2 <= 100, x2 >= x1 + 10, xm == (x1 + x2) / 2]

C++

Constraint constraints[] = { Constraint {x1 >= 0},
 Constraint {x2 <= 100},
 Constraint {x2 >= x1 + 20},
 Constraint {xm == (x1 + x2) / 2}
 };

The next step is to add them to our solver, which is an instance of Solver:

Python

from kiwisolver import Solver

solver = Solver()

for cn in constraints:
 solver.addConstraint(cn)

C++

Solver solver;

for(auto& constraint : constraints)
{
 solver.addConstraint(constraint);
}

Note

You do not have to create all your variables before starting adding
constraints to the solver.

So far we have defined a system representing three points on the segment
[0, 100], with one of them being the middle of the others which cannot get
closer than 10. All those constraints have to be satisfied, in the context
of cassowary they are “required” constraints.

Note

Cassowary (and Kiwi) supports to have redundant constraints, meaning that
even if having two constraints (x == 10, x + y == 30) is equivalent to a
third one (y == 20), all three can be added to the solver without issue.

However, one should not add multiple times the same constraint (in the same
form) to the solver.

Managing constraints strength

Cassowary also supports constraints that are not required. Those are only
respected on a best effort basis. To express that a constraint is not required
we need to assign it a strength. Kiwi defines three standard strengths in
addition of the “required” strength: strong, medium, weak. A strong constraint
will always win over a medium constraints which will always win over a weak
constraint 1 .

Lets assume than in our example x1 would like to be at 40, but it does not have
to. This is translated as follow:

Python

solver.addConstraint((x1 == 40) | "weak")

C++

solver.addConstraint(x1 == 40 | strength::weak);

Adding edit variables

So far our system is pretty static, we have no way of trying to find solutions
for a particular value of xm lets say. This is a problem. In a real
application (for a GUI layout), we would like to find the size of the widgets
based on the top window but also react to the window resizing so actually
adding and removing constraints all the time wouldn’t be optimal. And there is
a better way: edit variables.

Edit variables are variables for which you can suggest values. Edit variable
have a strength which can be at most strong (the value of a edit variable can
never be required).

For the sake of our example we will make “xm” editable:

Python

solver.addEditVariable(xm, 'strong')

C++

solver.addEditVariable(xm, strength::strong);

Once a variable has been added as an edit variable, you can suggest a value for
it and the solver will try to solve the system with it.

Python

solver.suggestValue(xm, 60)

C++

solver.suggestValue(xm, 60);

This gives the following solution: xm == 60, x1 == 40, x2 == 80.

Solving and updating variables

Kiwi solves the system each time a constraint is added or removed, or a new
value is suggested for an edit variable. Solving the system each time make for
faster updates and allow to keep the solver in a consinstent state. However,
the variable values are not updated automatically and you need to ask
the solver to perform this operation before reading the values as illustrated
below:

Python

solver.suggestValue(xm, 90)
solver.updateVariables()
print(xm.value(), x1.value(), x2.value())

C++

solver.suggestValue(xm, 90);
solver.updateVariables();
std::cout << xm.value() << ", " << x1.value() << ", " << x2.value();

This last update creates an infeasible situation by pushing x2 further than
100 if we keep x1 where it would like to be and as a consequence we get the
following solution: xm == 90, x1 == 80, x2 == 100

Note

To know if a non-required constraint was violated when solving the system,
you can use the constraint violated method.

New in version 1.4.

Footnotes

	1

	Actually there are some corner cases in which this can be violated.
See Solver internals and tips

Solver internals and tips

Kiwi is not a simple re-writing of Cassowary and because of that Kiwi does not
always perfectly reflects the original implementation. The following sections
points out those “discrepancies” and give some tips on how to work with
Kiwi.

Inspecting the solver state

The state of the solver can be inspected by dumping a text representation of
its state either to stdout using the dump method of the solver, or to a
string using the dumps method. Typically at least a basic understanding of
the Cassowary algorithm is necessary to analyse the output.

A typical output is reproduced below:

Objective

-2 + 2 * e2 + 1 * s8 + -2 * s10

Tableau

v1 | 1 + 1 * s10
e3 | -1 + 1 * e2 + -1 * s10
v4 | -1 + -1 * d5 + -1 * s10
s6 | -2 + -1 * s10
e9 | -1 + 1 * s8 + -1 * s10

Infeasible

e3
e9

Variables

bar = v1
foo = v4

Edit Variables

bar

Constraints

1 * bar + -0 >= 0 | strength = 1
1 * bar + 1 <= 0 | strength = 1.001e+09
1 * foo + 1 * bar + 0 == 0 | strength = 1.001e+09
1 * bar + 0 == 0 | strength = 1

In the dump, the letters have the following meaning:

	v: external variable, corresponds to the variable created by you the user

	s: slack symbol, used to represent inequalities

	e: error symbol, used to represent non-required constraints

	d: dummy variable, always zero, used to keep track of the impact of an
external variable in the tableau.

	i: invalid symbol, returned when no valid symbol can be found.

Stay constraints emulation

One feature of Cassowary that Kiwi abandoned is the notion of stay
constraints. Stay constraints are typically used in under-constrained
situations (drag and drop) to allow the solver to find a solution by keeping
non-modified variable close to their original position. A typical example is
a rectangle whose one corner is being dragged in a drawing application.

Kiwi does not have stay constraints mostly because in the context of widget
placement the system is usually well constrained and stay constraints are hence
unnecessary.

If your application requires them, several workarounds can be considered:

	adding/removing non-required equality constraints to mimic stay constraints

	using edit-variables to mimic stay constraints

The first method will require to remove the old constraints as soon as they
stop making sense, while the second will require to update the suggested value.

Creating strengths and their internal representation

Kiwi provides three strengths in addition of the required strength by default:
“weak”, “medium”, “strong”. Contrary to Cassowary, which uses lexicographic
ordering to ensure that strength are always respected, Kiwi strives for speed
and use simple floating point numbers.

Note

Using simple floating point, means that is some rare corner case a large
number of weak constraints may overcome a medium constraint. However in
practice this rarely happens.

Kiwi allows to create custom strength in the following manner:

Python

from kiwisolver import strength

my_strength = strength.create(1, 1, 1)
my_strength2 = strength.create(1, 1, 1, 2)

C++

double my_strength = strength::create(1, 1, 1);
double my_strength = strength::create(1, 1, 1, 2);

The first argument is multiplied by 1 000 000, the second argument by 1 000,
and the third by 1. No strength can be create larger than the required
strength. The default strengths in Kiwi corresponds to:

weak = strength.create(0, 0, 1)
medium = strength.create(0, 1, 0)
strong = strength.create(1, 0, 0)
required = strength.create(1000, 1000, 1000)

While Cassowary differentiate between strength and weight, those two concepts
are fused in Kiwi: when creating a strength one can apply a weight (the fourth
argument) that will multiply it.

Note

Because strengths are implemented as floating point number, in order to be
effective strengths must be different enough from one another. The
following is unlikely to produce any really useful result.

weak1 = strength.create(0, 0, 1)
weak2 = strength.create(0, 0, 2)
weak3 = strength.create(0, 0, 3)

Managing memory

When removing a constraint, Kiwi does not check whether or not the variables
used in the constraints are still in use in other constraints. This is mostly
because such checks could be quite expensive. However this means the map of
variables can grow over time.

To avoid this causing large memory leaks, it is recommended to reset the solver
state (using the method of the same name) and add back the constraints that
are still valid at this point.

Representation of constraints

If you browse through the API documentation you may notice a number of classes
that do not appear anywhere in this documentation: Term and Expression.

Those classes are used internally in constraints and are created automatically
by the library. A Term represents a variable/symbol and the coefficient that
multiplies it, Expression represents a sum of terms and a constant value and
is used as the left hand side of a constraint.

Performance implementation tricks

Map type

Kiwi uses maps to represent the state of the solver and to manipulate it. As a
consequence the map type should be fast, with a particular emphasis on
iteration. The C++ standard library provides unordered_map and map that could
be used in kiwi, but none of those are very friendly to the CPU cache. For
this reason, Kiwi uses the AssocVector class implemented in Loki (slightly
updated to respect c++11 standards). The use of this class provides a 2x
speedups over std::map.

Symbol representation

Symbol are used in Kiwi to represent the state of the solver. Since solving the
system requires a large number of manipulation of the symbols the operations
have to compile down to an efficient representation. In Kiwi, symbols compile
down to long long meaning that a vector of them fits in a CPU cache line.

Kiwisolver real uses

The following sections describe how kiwisolver is used in third-party project,
and aim at providing more involved example of how kiwisolver can be used in
real life project.

	Enaml
	Widget variables

	Constraints definition

	Setting up the solver

Enaml

Enaml is a programming language and framework for creating professional-quality
user interfaces with minimal effort. It relies on Kiwi to layout widgets.

To implement its layout, Enaml uses a nestable model. Containers widgets
handle the constraints generation used to layout their children. Furthermore,
they pass to their their children a representation of the bounding box in
which they should live which allows the widgets to position themselves inside
their parent. Since each leaf component has a “preferred size”, the system can
be solved from the bottom-up and set the size the parents based on the required
space of the children. If at a later time the parent is resized, this new input
can be used to solve the layout problem.

The following sections will describe in more details how the constraints are
generated and the preferred size estimated.

Widget variables

In Enaml, each widget that can be constrained defines a bunch of Kiwi
Variable: left, top, width and height. In addition,
it provides easy access to combination of those: right, bottom,
h_center, v_center. Those variables will be used to define the layout.

In addition, because each widget has a preferred size, it defines a set of
constraints related to that preferred size on which the user can act upon by
modifying their strength:
- hug_width: equivalent to (width == hint) | hug_width
- hug_height: equivalent to (height == hint) | hug_height
- resist_width: equivalent to (width >= hint) | resist_width
- resist_height: equivalent to (height >= hint) | resist_height
- limit_width: equivalent to (width <= hint) | limit_width
- limit_height: equivalent to (height <= hint) | limit_height

Finally, widget that can contain other widgets define a set of variables that
they expose to their children to allow to place themselves relative to their
parents. Those are: contents_left, contents_top, contents_width,
contents_height, contents_right, contents_bottom,
contents_h_center, contents_v_center. Those are usually not equivalent
to the non-prefixed variables (even-though they are related) because of the
container margins.

The base classes used a mixin to implement those behaviors are defined in:
https://github.com/nucleic/enaml/blob/main/enaml/layout/constrainable.py

Constraints definition

Using the above variable, one can express any constraints. However, even for
simple vertical or horizontal boxes, the constraints to define, in
particular if one needs to introduce some spacing around the objects, become
quite painful to write by hand.

To make constraints definition easier, Enaml relies on helpers function and
classes. In the following, we will focus on how horizontal and vertical boxes
constraints are handled, by studying the following example in details:

[image: ../_images/enaml_hbox.svg]Here we consider a container widget with three child widgets. The outer black
frame represents the limit of the container. The dashed frame represents the
contents visible to children when defining their constraint. The container uses
the margin definition to relate the outer left, top, width and height to their
‘contents’ equivalent.

The three widgets are arranged according to a horizontal box for which the
constraints are created using the hbox helper function which simply accepts
a list of widgets and spacers . To define the constraints from that list, Enaml
relies on the spacers represented here in orange. Each spacer has a
given size and a policy regarding that size (is it a minimum value, maximum,
how strongly to enforce that size). For each orientation, hbox add spacers so
that there is a spacer between each widget and between the widgets and the
parent boundaries. Some spacers can have a zero size, simply meaning that
widgets should be in contact.

When generating the constraints, hbox will be passed the container and use
the spacers to generate the constraints by simply glueing the anchors of
surrounding widgets. Each spacer can generate multiple constraints which gives
this process a lot of flexibility. Furthermore, those helpers define the same
variable as the widgets allowing for to position groups with respect to one
another.

Note

In practice, hbox itself relies on some helpers but the above gives you
the general idea.

For further details you can have a look at the source of the helpers described
in this section which can be found in the Enaml source:

	spacers: https://github.com/nucleic/enaml/blob/main/enaml/layout/spacers.py

	helpers:

	https://github.com/nucleic/enaml/blob/main/enaml/layout/layout_helpers.py

	https://github.com/nucleic/enaml/blob/main/enaml/layout/linear_box_helper.py

	https://github.com/nucleic/enaml/blob/main/enaml/layout/sequence_helper.py

Setting up the solver

So far we have only defined the constraints that represent the layout, we will
now turn to how Enaml pass those to the solver and how it handle updates and
solver resets.

By default, each container manages its own solver independently. This has
the advantage of keeping the system relatively smalls and hence allow for
faster updates. When setting up the solver, the container will add for each
widget a set of constraints reflecting the preference of the widget regarding
its size as reported by the widget, and add to those the constraints defining
the layout. It will also add two edit variable representing the width and
height of the container.

Once the solver has been set up it can be used to compute different values,
such as the best size for the container (requesting a size of 0 with a 0.1*weak
strength), its min size (0 size, medium strength) and max size (max size,
medium strength).

When the parent is resized, the solver is invoked again with the new width and
height as suggestion. On the other hand, if the constraints change either
because widgets have been added or removed or because the users modified them,
the solver is reset and the constraints are rebuilt-from scratch. This means
that we never keep the solver around long enough to have to worry about memory
consumption due to unused variables in the solver.

In a complex hierarchy, the top parent will request the sizes of the nested
containers which will trigger the solving of their constraints. At some point
in the nested structure, we will only find widgets which provides a size hint
without requiring to solve constraints (ex: a button). This will allow to solve
the system and then propagate back upward.

Hopefully this brief introduction will have clarified how Enaml make use of
kiwi to layout its widgets. Some fine mechanics have been simplified for the
sake of this description but you can check Enaml sources for a more in depth
description.

Developer notes

These notes are meant to help developers and contributors with regards to some
details of the implementation and coding style of the project.

C++ codebase

The C++ codebase currently targets C++11 compliance. It is header-only since
one of the focus of the library is speed.

Python bindings

Python bindings targets Python 3.7 and above. The bindings are hand-written and
relies on cppy (https://github.com/nucleic/cppy). Kiwisolver tries to use a
reasonably modern C API and to support sub-interpreter, this has a couple of
consequences:

	all the non exported symbol are enclosed in anonymous namespaces

	kiwisolver does not use static types and only dynamical types (note that the
type slots and related structures are stored in a static variable)

	modules use the multi-phases initialization mechanism as defined in
PEP 489 – Multi-phase extension module initialization

	static variables use is limited to type slots, method def

kiwisolver

	Python API

	C++ API

Kiwisolver Python API

	
exception kiwisolver.BadRequiredStrength

	Bases: Exception

	
class kiwisolver.Constraint

	Bases: object

	
expression()

	Get the expression object for the constraint.

	
op()

	Get the relational operator for the constraint.

	
strength()

	Get the strength for the constraint.

	
violated()

	Return whether or not the constraint was violated during the last solver pass.

	
exception kiwisolver.DuplicateConstraint

	Bases: Exception

	
exception kiwisolver.DuplicateEditVariable

	Bases: Exception

	
class kiwisolver.Expression

	Bases: object

	
constant()

	Get the constant for the expression.

	
terms()

	Get the tuple of terms for the expression.

	
value()

	Get the value for the expression.

	
class kiwisolver.Solver

	Bases: object

	
addConstraint()

	Add a constraint to the solver.

	
addEditVariable()

	Add an edit variable to the solver.

	
dump()

	Dump a representation of the solver internals to stdout.

	
dumps()

	Dump a representation of the solver internals to a string.

	
hasConstraint()

	Check whether the solver contains a constraint.

	
hasEditVariable()

	Check whether the solver contains an edit variable.

	
removeConstraint()

	Remove a constraint from the solver.

	
removeEditVariable()

	Remove an edit variable from the solver.

	
reset()

	Reset the solver to the initial empty starting condition.

	
suggestValue()

	Suggest a desired value for an edit variable.

	
updateVariables()

	Update the values of the solver variables.

	
class kiwisolver.Term

	Bases: object

	
coefficient()

	Get the coefficient for the term.

	
value()

	Get the value for the term.

	
variable()

	Get the variable for the term.

	
exception kiwisolver.UnknownConstraint

	Bases: Exception

	
exception kiwisolver.UnknownEditVariable

	Bases: Exception

	
exception kiwisolver.UnsatisfiableConstraint

	Bases: Exception

	
class kiwisolver.Variable

	Bases: object

	
context()

	Get the context object associated with the variable.

	
name()

	Get the name of the variable.

	
setContext()

	Set the context object associated with the variable.

	
setName()

	Set the name of the variable.

	
value()

	Get the current value of the variable.

Kiwisolver C++ API

Under construction

 Python Module Index

 k

 		 	

 		
 k	

 	
 	
 kiwisolver	

Index

 A
 | B
 | C
 | D
 | E
 | H
 | K
 | M
 | N
 | O
 | R
 | S
 | T
 | U
 | V

A

 	
 	addConstraint() (kiwisolver.Solver method)

 	
 	addEditVariable() (kiwisolver.Solver method)

B

 	
 	BadRequiredStrength

C

 	
 	coefficient() (kiwisolver.Term method)

 	constant() (kiwisolver.Expression method)

 	
 	Constraint (class in kiwisolver)

 	context() (kiwisolver.Variable method)

D

 	
 	dump() (kiwisolver.Solver method)

 	dumps() (kiwisolver.Solver method)

 	
 	DuplicateConstraint

 	DuplicateEditVariable

E

 	
 	Expression (class in kiwisolver)

 	
 	expression() (kiwisolver.Constraint method)

H

 	
 	hasConstraint() (kiwisolver.Solver method)

 	
 	hasEditVariable() (kiwisolver.Solver method)

K

 	
 	
 kiwisolver

 	module

M

 	
 	
 module

 	kiwisolver

N

 	
 	name() (kiwisolver.Variable method)

O

 	
 	op() (kiwisolver.Constraint method)

R

 	
 	removeConstraint() (kiwisolver.Solver method)

 	
 	removeEditVariable() (kiwisolver.Solver method)

 	reset() (kiwisolver.Solver method)

S

 	
 	setContext() (kiwisolver.Variable method)

 	setName() (kiwisolver.Variable method)

 	
 	Solver (class in kiwisolver)

 	strength() (kiwisolver.Constraint method)

 	suggestValue() (kiwisolver.Solver method)

T

 	
 	Term (class in kiwisolver)

 	
 	terms() (kiwisolver.Expression method)

U

 	
 	UnknownConstraint

 	UnknownEditVariable

 	
 	UnsatisfiableConstraint

 	updateVariables() (kiwisolver.Solver method)

V

 	
 	value() (kiwisolver.Expression method)

 	(kiwisolver.Term method)

 	(kiwisolver.Variable method)

 	
 	Variable (class in kiwisolver)

 	variable() (kiwisolver.Term method)

 	violated() (kiwisolver.Constraint method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Kiwisolver’s documentation!

 		
 Getting started

 		
 Installing Kiwisolver on Python

 		
 The easy way: Pre-compiled packages

 		
 Compiling it yourself: The Hard Way

 		
 Supported Platforms

 		
 Checking your install

 		
 Constraints definition and system solving

 		
 Defining variables and constraints

 		
 Managing constraints strength

 		
 Adding edit variables

 		
 Solving and updating variables

 		
 Footnotes

 		
 Solver internals and tips

 		
 Inspecting the solver state

 		
 Stay constraints emulation

 		
 Creating strengths and their internal representation

 		
 Managing memory

 		
 Representation of constraints

 		
 Performance implementation tricks

 		
 Use cases

 		
 Enaml

 		
 Widget variables

 		
 Constraints definition

 		
 Setting up the solver

 		
 Developer notes

 		
 C++ codebase

 		
 Python bindings

 		
 API Documentation

 		
 Python API

 		
 C++ API

_static/minus.png

_static/plus.png

_static/file.png

